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Abstract: Imaging neural activities at the cellular level in the deep brain is essential to understand
the structure and functions of nervous systems. Recently developed fully implantable optical
sensors have the capability to capture fluorescence signals within the deep tissue; however, their
potential for high-quality imaging is not clear. In this paper, we develop a simplified model to
analytically study the photon transport in the biological tissue, and utilize it to understand the
optical performance of an implantable fluorescence imager. Spatial resolution of the implanted
imager is calculated, and imaging qualities for groups of neurons in two- and three-dimensional
configurations are evaluated. The results here establish feasible solutions to design implantable
optical sensors and predict their performance for biomedical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Unraveling the mysteries of the brain structure and functions is the key of neuroscience, and sets
up the foundation of developing emerging technologies for neurological disease treatment and
neuromorphic computers [1]. Methods like electroencephalography (EEG), X-ray computed
tomography (CT), and functional magnetic resonance imaging (fMRI) are widely used to
understand the nervous system and have realized clinical applications [2]. However, their spatial
resolution is limited and has weak relevance with the cellular activities of the neuron network.
Microelectrode arrays can be applied on the cortex surface or implanted into the deep brain,
monitoring neuronal activities by recording extracellular and even intracellular signals [3–5].
Although such microelectrodes can achieve high spatial and temporal resolutions, it is challenging
to decode a large volume of neurons (for example, > 104) at the cellular level [6].
Recently, optical methods have been extensively exploited to probe the neuronal system, not

only realizing ideal spatial and temporal resolutions but also having the capability to capture
numerous neurons at the same time [7,8]. In particular, the rapid development of genetically
encoded fluorescent indicators enables precise signal detection for specific types of neurons [9].
Large-scale, in vivo imaging has been demonstrated to monitor ion (for example, Ca2+ [10]),
neurotransmitter (for example, dopamine [11]) or direct voltage signals at the cellular level [12].
Unlike X-ray, ultrasound and magnetic field, optical imaging is plagued by the strong absorption
and scattering of biological tissues in the visible range. Non-invasive, in vivo optical imaging
can only be performed on the cortex surface or at a depth less than ∼2 mm even with the aid of
advanced techniques like confocal microscopy [13] and multiphoton microscopy [14,15]. While
emerging tools like micro-optical sectioning tomography (MOST), CLARITY and expansion
microscopy have potential to image the whole brain [16–18], currently such tools cannot be
applied for living cells in vivo since brain tissues are sliced or engineered to become more
transparent by eliminating certain components in the cell body.
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To bypass these challenges, implantable devices and systems are developed to capture optical
signals in the deep brain tissue [19]. Bundles of optical fibers [20] or gradient index (GRIN) lenses
[21] can be implanted into the brain, delivering light into the deep tissue and guiding fluorescence
signals out to external imaging systems, which can be miniaturized for use in experimental
animals [22]. Shortcomings of these systems are associated with the large lesion created by
these implanted fiber bundles and GRIN lenses. In addition, the fiber bundles and GRIN lenses
can only take images at a certain depth. In some scenarios, it is crucial to probe neural signals
at different depths in the brain, in order to understand the connection among different brain
regions and nuclei [23,24]. Recently, an implantable image sensor system is proposed to observe
real-time fluorescence activities in the deep brain [25]. Conceptually illustrated in Fig. 1(a),
the implantable imager combines a customized, complementary metal-oxide-semiconductor
(CMOS) sensor and light-emitting diode (LED) based excitation sources, integrated onto a
flexible thin-film probe and injected into the deep brain. LEDs with appropriate wavelengths
are utilized to excite the neurons expressing target fluorescence dyes or proteins (for example,
GCaMP6 for Ca2+ sensing [10]). Spatially and temporally resolved fluorescence signals are
captured by the image sensor, so neuronal activities of behaving rodents can be decoded in vivo
(Fig. 1(b)). Different from fiber bundles and GRIN lenses that coupled to external imagers, such
implanted imagers directly receive optical signers from tissues on the surface, without using any
lens optics or other systems for focusing. Although the imager sensor can be formed based on
the-state-of-the-art CMOS technology and reach a pixel size of a few micrometers, it is unclear
how these systems perform, in terms of their imaging qualities (resolution, contrast, etc.).

Fig. 1. (a) Schematic illustration of an implantable image sensor for fluorescence mapping
in the deep brain. (b) Zoomed-in view of the sensor on a thin-film probe, capturing the
fluorescence signals of neurons in the brain tissue.

In this paper, we aim to analytically understand the performance of an implanted optical
imager shown in Fig. 1. Based on the photon transport in the biological tissue, we investigate the
resolution limits for such an implantable imager, and numerically predict the quality of images
mapping a group of fluorescent neurons in two-dimensional (2D) and three-dimensional (3D)
conditions. The results are discussed, with possible solutions for performance improvements
provided as research directions in the future.

2. Results

To predict the performance of the aforementioned implantable, microscale imaging sensor shown
in Fig. 1, we establish a mathematical model to analyze the photon propagation in the brain.
Schematically illustrated in Fig. 2(a), the thin-film probe with an image sensor is implanted into
the mammalian neural tissue. On top of the imager, there is only one neuron expressing green
fluorescent protein (GFP). To simplify the model, here we assume that the GFP fluorescence is
isotropic and monochromatic at the wavelength of 520 nm, and the neuron is approximated by a
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sphere with a diameter of 10 µm. The CMOS sensor is also assumed to be monochromatic, having
ideal photon responsivity and spectral selectivity. It means that it has a 100% photon-to-electron
conversion efficiency at all receiving angles at 520 nm and no response at the GFP excitation
wavelength (∼480 nm). For a specific pixel in the CMOS sensor, the optical power received by
the pixel can be described as [26]

I(x) = I0
exp(−µeffL)

Ln (1)

where I0 is related to the output power emitting from the neuron (which can be normalized to 1),
L is the distance from the pixel to the center of the neuron cell, and

L =
√

x2 + d2 (2)

Here d is the distance between the imager and the center of the neuron cell, and x is the distance
from the pixel to the projection of the center of the neuron cell onto the sensor plane. µeff is the
effective attenuation coefficient and defined as

µeff =
√
3µa(µa + µ′s) (3)

where µa is the absorption coefficient of biological tissue, and µs’ is the transport scattering
coefficient defined as

µ′s = µs(1 − g) (4)

where g is the anisotropy of biological tissue that has a representative value of 0.85 (highly
forward scattering), and µs is the scattering coefficient of biological tissue. Here we apply the
parameters for white matter of the brain, at 520 nm µa = 0.19/mm and µs = 44.3/mm [27].

Fig. 2. (a) Schematic illustration of the optical model showing one fluorescent neuron
on top of the imager, with a distance d from the imager. (b, c) Normalized fluorescence
intensity profiles of the neuron detected by the imager at various distances (d = 100, 50,
20, 10 and 5 µm), based on: (b) our analytical model and (c) numerical (Monte Carlo ray
tracing) simulation, respectively.

In Eq. 1, n is a geometrical parameter and dependent on the photon propagation length.
For short propagation lengths (smaller than the mean free path 1/µs), photon transport can be
approximated using the wave theory; for long propagation lengths (larger than the mean free path
1/µs), diffusion theory should be applied [26]. Therefore, we have

n = 2 for d �
1
µs

(5)

and
n = 1 for d �

1
µs

(6)
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To accommodate the situations in the intermediate region for d and satisfy Eq. 5 and 6, we
describe n in a generalized form:

n = 2 − exp(−µsd) (7)

Based on the above discussion and Eqs. (1)–(7), we calculate the intensity profiles for the
fluorescent neuron detected by the imager at different distances, and plot the normalized data
in Fig. 2(b). The results are compared with those obtained using the Monte Carlo ray tracing
method based on the same simulation parameters (Fig. 2(c)) [28]. It can be observed that the
analytical and numerical results show a good agreement. The discrepancies at small distances
d are probably associated with the complex scattering behaviors that are difficult to model
perfectly with the above equations. Nevertheless, the analytical model we develop here presents
a reasonable level of accuracy to understand the photon transport in the biological tissue, and can
be employed to effectively and efficiently calculate optical intensity profiles generated from large
groups of neurons, which will be presented in subsequent sections.
Based on the analytical model developed above, we further evaluate the limits of the spatial

resolution for the implantable sensor for imaging purposes. Schematically illustrated in Fig. 3(a),
here we establish a model with two fluorescent neurons on top of the imager in the brain tissue.
The two neurons are assumed to have identical fluorescence power, with the same distance d from
the device surface and varied spacing ∆x. Based on the above Eqs. (1)–(7) and results in Fig. 2(b),
we can calculate the fluorescence intensity profile captured by the imager for each neuron. The
two peaks superpose to form the resultant profile projected onto the imager. Figures 3(b)–3(e)
plot representative results of normalized fluorescence intensity profiles for two neurons at various
∆x (150, 90, 38, and 25 µm) and a fixed d (20 µm). When the spacing ∆x decreases, the two
peaks overlap and become indistinguishable. Here the resolution R is defined as the critical
spacing ∆x, at which the half heights of the two peaks coincide. For example, R ≈ 30 µm for
d = 20 µm. Based on this criterion, Fig. 3(f) plots the calculated spatial resolution limit as a
function of d. R is ∼8 µm for d = 5 µm, and monotonically increases with d. In the mammalian
brain, the density of neurons varies in different brain regions, so does the performance for the
imager. In some regions with densely packed neurons, the average distance between neurons is
∼25 µm [29]. In these regions, the implanted imager can only resolve fluorescent neurons with
d < 20 µm, while neurons far apart from the sensor cannot be resolved. These results provide a
baseline to understand the resolution limits for the implantable imager and offer a guideline on
its applicable occasions for in vivo fluorescence imaging.

In Fig. 4(a), we further establish a model to study a group of fluorescent neurons on top of the
imager. These neurons, which are assumed to have the same luminescent power, are randomly
located on a plane with a distance d from the imager. This model could emulate the imaging of a
thin brain slice ex vivo. The neuron density is 1200 /mm2, and the average distance between
neurons is ∼28 µm [30]. The implanted CMOS sensor has an active area of 400×400 µm2.
Figures 4(b)–4(f) present calculated fluorescence intensity profiles detected by the imager when
the same set of neurons are positioned at various distances (d = 5, 10, 20, 50 and 100 µm) from
the imager surface. In these contour maps, the results are normalized to (0, 1) with background
signals subtracted. At small distances (for example, d = 5 µm), most fluorescent neurons can be
well resolved, and single cell activity would be clearly observed in experimental conditions in
vivo. When the distance d increases, the imaging starts to get blurred. In accordance with the
calculations in Fig. 3, the implanted imager can only resolve fluorescent neurons with d < 20 µm,
if the average distance between neurons is around 20–30 µm. For larger distances (d = 50 or 100
µm), fluorescent signals from individual neuron cannot be distinguished. Instead, what the sensor
captures is superposed photon emission from multiple neurons, which represents the overall
neural activity in the specific brain region. In these scenarios, the results should be similar to
those photometric results obtained via an implanted fiber [31] or a photodetector [32].
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Fig. 3. (a) Schematic illustration of the optical model showing two fluorescent neurons
on top of the imager, with the same distance d from the imager and a varied spacing ∆x
between each other. (b–e) Normalized fluorescence intensity profiles detected by the imager
at various ∆x (150, 90, 38, and 25 µm) and a fixed d (20 µm). (f) Calculated resolution
limits R as a function of d.

Fig. 4. (a) Schematic illustration of the optical model showing a group of fluorescent
neurons on top of the imager, with the same distance d from the imager. The neurons are
randomly distributed, with an areal density of ∼1200 /mm2. (b–f) Normalized fluorescence
intensity profiles detected by the imager at various distances (d = 5, 10, 20, 50 and 100 µm).

Ultimately, a more realistic circumstance is to consider an implanted imager into a brain region
in vivo with fluorescent neurons in 3D space, as we investigate in Fig. 5. The human brain has
a 3D structure with a volume of ∼1500 cm3 comprising ∼1011 neurons [33]. Therefore, the
volumetric neuron density is ∼70000 /mm3. Considering this fact, we establish the 3D model
with a volume of 800×800×100 µm3 that contains ∼4000 randomly distributed neurons on top
of the imager (distance from 5 µm to 100 µm). First, we assume all the neurons have the same
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fluorescent intensity, as shown in Fig. 5(a). We can still apply the established mathematical
model in Fig. 2 and obtain the overall fluorescence intensity profile captured by the imager, as
presented in Fig. 5(d). Similar to Fig. 4, the results here are also normalized to (0, 1) with certain
background signals subtracted. With fluorescent centers at different distances d from the imager
surface overlaid with each other, it can be seen that the 3D model is much more complicated
than the 2D one in Fig. 4. In the contour map, some neurons close to the imager (d = 5–10 µm)
can be barely resolved. Fluorescence from neurons far away from the imager contributes to the
background signal with little spatial resolution, which significantly reduces the signal-to-noise
ratio and thus degrades the imaging quality.

Fig. 5. (a–c) Schematic illustrations of the optical models, showing a group of fluorescent
neurons in 3D space on top of the imager. The neurons are randomly distributed, with a
volumetric density of ∼70000 /mm3. The fluorescence intensities for all the neurons are
uniform in (a) and non-uniform in (b) and (c), depending on the positions of excitation
sources. (d–f) Normalized fluorescence intensity profiles detected by the imager.

In the above analysis, the effects of excitation light sources have not been taken into account.
In fact, it is highly unlikely that all the neurons have the same fluorescent intensity as shown in
Fig. 5(a), due to the existence of the excitation source. Excitation can be provided by integrating
microscale light emitters (for example, LEDs) on the implanted probe [25,32], or offered by
illuminating the neurons on top using external sources. In these two cases, the neurons at different
distances d from the imager surface receive different excitation intensity and should have different
luminescent power. If we assume the neurons on the same plane still receive the same excitation
power, Eq. (1) can be modified accordingly to accommodate the contribution from the excitation
source. For excitation sources with the same location as the imager on the probe, we can have

I(x) = I0
exp(−µeffL)

Ln exp(−µeff - exd) (8)

For external sources, we can have

I(x) = I0
exp(−µeffL)

Ln exp(+µeff - exd) (9)

The two models are schematically illustrated in Figs. 5b and 5c, respectively. Here µeff−ex is
the effective attenuation coefficient of the neural tissue at the excitation wavelength (∼480 nm),
which can be calculated based on Eqs. (3) and (4) and parameters from [27]. Calculated results
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based on the modified models are presented in Figs. 5(e) and 5(f), for the group of neurons with
the same locations as those in Fig. 5(d). Obtained results are similar for different cases, since
µeff−ex is small (∼2 /mm). Nevertheless, the image quality shown in Fig. 2(e) is better than the
other two cases, because the neurons closer to the imager possess higher luminescent power and
can be more easily resolved. For the case with external excitation sources (Fig. 2(f)), the image
quality is the worst because of the high background signals from fluorescent neurons far away
from the imager.

3. Summary

In this work, we establish a mathematical model to investigate the optical performance of an
implantable, thin-film image sensor for studying neuronal fluorescence activities in the deep
brain. Based on the photon transport theory, such a simplified model presents a numerical
accuracy comparable to the standard Monte Carlo ray tracing method, with clear advantages for
simulating a large group of fluorescent centers in biological tissues. Our current results reveal
that the imaging capability of such an implanted sensor is very limited, due to the unavailability
of complex concentration optics that are necessary for high quality imaging. While fluorescent
neurons close to the imager can be well resolved, those far away from the sensor cannot be focused
to form a clear image and only contribute to blurred, unresolved background signals. Although it
is very challenging, realizing an ultra-miniaturized and fully implanted imager is highly desirable
for resolving neural activities at different depths in the deep brain. Future directions include the
development of micro-machined lens systems on the imager surface to focus the signals. Other
possible solutions may be the exploitation of advanced ultrathin metasurface based lens [34].
In addition, advanced image process algorithms like deconvolution [35] can be employed to
enhance the contrast and possibly reconstruct better images. Furthermore, alternative red shifted
fluorescence proteins [36] would possess light emission at longer wavelengths than GFPs, with
reduced scattering and absorption for possibly improved imaging qualities. To summarize, the
technology for implantable imagers is emerging and conceivably it will become a power tool in
fundamental studies and clinical uses.
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